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Arithmetic operations were previously implemented using neuronal pre-synaptic transfer functions. We implement them by controlling the neural
network connectivity -> Network topology, and Synaptic weight adaptation. Our circuits encode and process information in the spike rates that lie
between 40-140 Hz. The synapses in our circuit obey simple, local and spike-time dependent adaptation rules.
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* We can theoretically implement any Conclusion:
power law. The SNNs for Exp and  The building blocks we have designed in this paper can perform the fundamental operations — addition, subtraction, multiplication and division, as well as other
Log have to be tuned appropriately. non-linear transformations such as exponentiation and logarithm for time dependent signals in real-time, in presence of noise.

« Using the linear operations, we can * Though our circuits use the AEIF neuron model, the outlined design methodology can be readily used to design SNN circuits that use other spiking neuron models.
implement polynomial operations * We have illustrated the power of these circuits to perform complex computations based on the frequency of spike trains in real-time, and thus they can be used in
on spike trains. a wide variety of hardware and software implementations for navigation, control and computing.
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