Arithmetic Computing via Rate Coding in Neural
Circuits with Spike-triggered Adaptive Synapses

Sushrut Thorat
Department of Physics
Indian Institute of Technology, Bombay
Maharashtra, India 400076
Email: sushrut.thorat94 @ gmail.com

Abstract—We present spiking neural circuits with spike-time
dependent adaptive synapses capable of performing a variety
of basic mathematical computations. These circuits encode and
process information in the spike rates that lie between 40—140 Hz.
The synapses in our circuit obey simple, local and spike-time
dependent adaptation rules. We demonstrate that our circuits
can perform the fundamental operations — addition, subtraction,
multiplication and division, as well as other non-linear transfor-
mations such as exponentiation and logarithm for time dependent
signals in real-time. We show that our spiking neural circuits are
tolerant to a high degree of noise in the input variables, and
illustrate its computational capability in an exemplary signal
estimation problem. Our circuits can thus be used in a wide
variety of hardware and software implementations for navigation,
control and computation.

I. INTRODUCTION

One of the fundamental questions of neuroscience is how
basic computational operations could be performed by neural
circuits that encode information in the temporal domain. Math-
ematical operations such as addition and multiplication are
central to signal processing, and hence to neural computations.
Addition and subtraction are essential for pattern recognition.
These operations can alter the number of neurons required
to reach threshold and influence the ability to distinguish
different patterns of activation [1]. Multiplicative operations
occur in a wide range of sensory systems. Computations such
as looming stimulus detection in the locust visual system [2],
and auditory processing in the barn-owl nervous system [3],
rely on multiplication operations. In this paper, we model
these operations using Spiking Neural Networks (SNNs) [4], to
unravel potential mechanisms underlying these computations
in biological systems. The goal of our study is to mathemati-
cally describe the connections in a system, and build SNNs to
perform the required mathematical operations. These circuits
can then be used to build complex networks to model higher
order neural functions, and intricate control systems.

There have been various attempts at building SNNs to
perform basic mathematical operations. Koch and Seveg de-
tailed the role of single neurons in information processing [8].
Srinivasan and Bernard proposed a mechanism for multiplica-
tion which involved detecting coincident arrival of spikes [5],
but coincidence detection cannot be used to perform division.
Tal and Schwartz used a Log transfer function, generated by
creating a refractory period in the Leaky-Integrate-and-Fire
neurons, and correlated multiplication with the addition of the

978-1-4799-1959-8/15/$31.00 (©)2015 IEEE

Bipin Rajendran
Department of Electrical Engineering
Indian Institute of Technology, Bombay
Maharashtra, India 400076
Email: bipin@ee.iitb.ac.in

logarithms, but they did not calculate the exact multiplication
[6]. Inspired by the barn-owl auditory processing capabilities,
Nezis & van Rossum built a SNN for multiplication by
approximating multiplication by the minimum function, and
using a power-law transfer function [7]. All the approaches
used voltage to spike-rate (pre-synaptic) non-linear transfer
functions to achieve multiplication.

In this paper, we adopt a novel strategy to perform math-
ematical operations using SNNs. We develop small SNNs
with linear transfer functions, and spike-time dependent plastic
synapses using simple weight adaptation rules to perform these
operations. We introduce a new token of information which we
call Spike Info, s, to be used to encode information in place
of Spike Rate, as required towards the linearisation of spike
response to stimuli. We will use the linearized neuron model to
develop circuits to perform linear operations such as addition
and subtraction. For multiplication and division operations, we
use exp(log s1 +log s2), where s; and s are the input spike in-
fos. A similar computational scheme exists in the locust visual
system [2], although it uses pre-synaptic non-linear transfer
functions for the logarithm and exponentiation operations.
We then detail SNNs for performing transformations such as
logarithm, exponentiation, multiplication, and division. Note
that all these operations are in the spike rate domain, and they
work in real-time for biologically plausible signals. We then
assess the performance of the developed SNNs, especially its
noise resilience, and illustrate its applicability in an exemplary
signal estimation problem related to echolocation in real-time.
The formalism and the circuits we have developed here can be
used to compose large spiking neural circuits for software as
well as power efficient hardware implementations.

II. SPIKING NEURAL NETWORK IMPLEMENTATION

We use the Adaptive Exponential Integrate and Fire (AEIF)
neuron model [9][14] for modeling the dynamics of the
neurons, with the parameters chosen to mimic regular spiking
(RS) neurons. The dynamics of the membrane potential V' (),
in response to synaptic current I,,, and applied current I..
is described by the equations,

av Vit) -V,
C— = —gr(V(t) — EL) + gLArexp M
dt At

- U(t) + Iext(t) + Isyn(t>7 (1%1)

W o) - En) - UG®), (1b)

rn

and when V(t) >0,V (t) = V. and U(t) — U(t) + b.

Synaptic current due to a spike in the pre-synaptic neuron
at time ¢/ is given by the equation,

Toyn(t) = Low [el‘p (2—”) — exp (t ; tf)} h(t—t5),

m S
(2)
where w is the weight of the synapse and h is the Heaviside
step function.

The values of the parameters of the neuron are listed in
Appendix A. We simulate the dynamics of our circuits in
MATLAB and we obtain convergent results by using Euler
method with a step size of 0.01 ms. The instantaneous spike
rates are calculated by using the adaptive Kernel Density
Estimation method, as discussed by Shimazaki & Shinomoto
[10]. When we do not deal with the pictorial representation
of spike rate in real-time (which requires knowledge of the
instantaneous spike rate), we identify the time window during
the simulation when the inverse of the inter-spike intervals
approximately converge, and we average over the time window
to find the average spike rate.

III. LINEARIZED NEURON

The spike rate of a RS (AEIF) neuron in response to the
applied DC current is shown in Fig. 1. The response is non-
linear, starkly more so in the region of low spike rate. To
make the response linear, we design a ‘linearized neuron’,
by applying a bias current ([, = 265nA), and introducing
a self-inhibitory synapse (w;,, = —130) to the AEIF neuron
as shown in Fig. 2. The self-inhibitory connection also lets
us access a wider domain of input current while keeping the
spike rate under 200 Hz.

35

30

25-

201

15¢

Spike Rate (Hz)

10r

5,
230 240 250 260 270 280 290 300
Input DC (pA)

Fig. 1: The spike rate response at lower DC input currents of an AEIF
neuron is non-linear. Since the spike rate response at higher DC input
currents is almost linear, this regime is better suited for computations.

The spike rate of the linearized neuron (Fig. 3a) at zero
input current is now fy = 14.55 Hz. Considering the informa-
tion coded in the spike rate of the neuron to be offset by this
value, we define a quantity called Spike Info, denoted as s, by
the relation

s =f—fo 3)

where f is the observed spike rate. Since the output spike
rate is more or less constant, the average value of the synaptic

Winpy

Fig. 2: Our linearized neuron is an AEIF neuron with a self-inhibitory
synapse w;,n = —130 and with a bias current [, = 265 nA.

current flowing out of the output neuron for unit weight is also
found to increase linearly with spike rate (Fig. 3b). Hence, the
cardinal relations obeyed by the linearized neuron are

Sout = Qlyp “)
<Iout> =w ([350ut + 7) 5

where, a = 0.2237Hz/pA, 5 = 0.01105pA/Hz, and v =
0.1605pA.

(a) (b)
120 ol) .
Sout = @i 1.4¢ Iout =w(B Sout+Y)]
100
1.2¢
80 1 1l
— <
T 60 < sl
= =z '
3 =]
mO 400 | —° 0.67
0.41
201
o Observed Observed
0 — Linear fit 0.2 —Linear fit
0 250 500 0 50 100
Iin (PA) Sout (H)

Fig. 3: By using a bias current to avoid the low current region, and
introducing a self-inhibitory connection to reduce the residual non-
inearity, a linear dependence can be obtained. The bias current also
creates a positive offset of fo = 14.55Hz in the spike rate. So, we
introduce a token of information Spike Info, s, defined as s = f — fo.

A. Offseting and Scaling Spike Info

Winp,
Wy
S é Sy
[m]out
/ T
]b’ [b

Fig. 4: By adjusting the value of wi> and Iy, we can independently
obtain the transformations sz = s1 + sg and/or sa = 7s1.

Now we discuss how to design a SNN that offsets a given
spike info (by a factor sg) or scales it (by a factor 1) according
to the transformation

Sout = NSin + S0 (6)

Referring to the SNN depicted in Fig. 4, s; denotes the input
spike info and s2 denotes the output spike info. We will show
that by adjusting the values of w;s and Iy, we can obtain this
transformation independently. Let the average current flowing
into Ny due to s; be denoted as I;,,. Then

{Zin) = w12(Bs1 +7) (7a)
s2 ~ a({Lin) + Iy) (7b)

Hence,
sg & wigafBs1 + a(ly + ywiz) ()

Note that (7b) is an approximate relation, as (I;,) is not a
DC current. By appropriately tuning the values w2 and I,
we can independently add an offset or scale the input spike
info (Figs. 5 & 6). The values of these parameters needed for
some of these transformations we will use later in the paper
are listed in Table I.

TABLE I: Parameters for Scaling and Offset, Sout = NSin + So

w12 Ib/ n S0 FigA
(pA) (Hz)
195 —46 0.5 0 5
400 —75 1 0 5
865 —188 2 0 5
430 28 0 30 6
445 256 0 80 6
201 44 0.5 21 20, 21
207 123 0.5 40 6, 22
401 115 0.93 48 15
120 ; ; A
s_=2s8 S,=8
100} 27 2
80r
i 601 s,=0.58,
Ql
w
40}
20
0 L L L L L
0 20 40 60 80 100 120
s, (H2)

Fig. 5: In the range of 0 — 120 Hz spike info, it is possible to linearly
scale the spike info by tuning the parameters w12 and I (Table I).

IV. LINEAR OPERATIONS
A. Addition

We now design a SNN which will perform the addition
operation in the ‘spike info’ domain. The circuit is shown in
Fig. 7; the input spike infos are fed into a linearized neuron
through two identical excitatory synapses wWsgym,. This neuron
also receives an additional bias current [, to correct for
offset errors. Hence, the total average current flowing into the
adder neuron is

<Imp> ~ wsum(ﬁsl + ’Y) + wsum(ﬁs2 + 'Y) + Lsum)

140

1201

1001

80

S, (H2)

601

40

200 2b 4b 66 86 160 120
s, (Hz)
Fig. 6: It is possible to introduce an offset, and/or scale the spike info

in the range of 0 — 120 Hz by adjusting the parameters w12 and Iy
(Table I).

> Ssum =51 +SQ

I, w—p Ercitatory

@ Inhibitory

Fig. 7: Sum of spike infos can be computed by feeding the input
spikes into a linearized neuron with equal excitatory synapses with
Wsum = 405. The bias current Isum = —190pA ensures that
Ssum = 81 + S2.

As before, this is the average current flowing into a
linearized neuron. Hence,

Ssum N Oé[mp

= O‘ﬁwsum(sl + 52) + a(2ﬁ/wsum + Isum) (10)

90

60

30

Spike Info (Hz)

(s)

sum’ obs

0 1 2 3 4
Time (s)

Fig. 8: (a) Exemplary spike infos s and s were generated by feeding
sinusoidal and ramp input currents to two linearized neurons. (b) The
output generated by the adder has a time dependent spike rate that
matches the expected s1 + so.

By appropriately choosing the parameter values, (here,
Weym = 405 and Igym = —190pA) we can ensure that

Ssum = S1 + S2. The circuit faithfully computes the sum
of spike infos in real-time. When a slowly varying sinusoidal
spike info and a ramp spike info are applied to the adder, it
generates a spike stream in real-time, whose spike info closely
matches the expected variation (Fig. 8). The input spike infos
used in this study were generated by applying appropriate
currents to linearized neurons not shown here.

B. Subtraction

On similar lines, a SNN to determine the difference of
spike infos can be obtained as shown in Fig. 9 by feeding
the input spikes to a linearized neuron, but one through an
excitatory synapse and the other through an inhibitory synapse
with identical strengths (wq;¢). Then,

Sdiff = olinp
= afwaisr(s1 — s2) + alaify (1)

A small value of Iy is required to correct for offset errors
that arise due to the synaptic currents being time dependent.
The SNN shown with wg; sy = 405 and bias current Iy;¢r =
—13 pA computes (s; — s2) for s; > so (Fig. 10).

Sy
W g
winh

Lig

Fig. 9: The SNN circuit for calculating the difference in spike info
uses an inhibitory synapse with equal magnitude as the excitatory
synapse, with wgq;sy = 405 and Igi55 = —13 pA.

—> Saiff~ (81-85)

Ji = Fzcitatory
b
@ Inhibitory

100

~

< 0 ‘

o

£ 0 1 2 3 4

@

= 60 " . :

= (s} (s,

o diff' obs diff’ exp
a0l 2 e % |
20+ 1
00 1 2 3 4

Time (s)

Fig. 10: (a) Exemplary spike infos s; and s were generated by
feeding sinusoidal input currents to two linearized neurons. (b) The
output spike info of the difference SNN matches the expected value
(s1 — s2) when s1 > s2. Since all circuits in our scheme process
only positive spike info, we have not optimized the circuit to match
the response when s; < so.

V. NON-LINEAR OPERATIONS

To complete the repertoire of basic mathematical opera-
tions, we now proceed to build SNNs for multiplication and

division. One way to implement these operations is by using
exponentiation and logarithm as exp(log sy + log s2), where
s1 and so are the input spike infos.

A. Logarithm

We will now develop a SNN whose output spike info will
be the natural logarithm of the input spike info. We propose
that this can be achieved by feeding the input spikes to a
linearized neuron with a spike dependent adaptive synapse
Wi, (t) as shown in Fig. 11. Also note that this linearized
neuron is receiving an additional DC bias current Ij,.

Winh,

Wy, (t)
& > > So
! I in i out ’

I, // le

Fig. 11: The adaptive synapse wy(t) responds dynamically to the
input spikes. By choosing appropriate parameters for the update,
output spike info can be made proportional to the logarithm of the
input spike info.

We require the spike activity of the output neuron to be
sub-linearly proportional to the synaptic current. This can be
done by imposing the following weight update rule

dwln
dt

= _kO(wln - wO) - kl(Izn - IO)a (12)

where wq, kg, k1 and Iy are some constants.

Since the bias current I, is a constant, (7a) implies that
Iin = win(t)(Bs1 + 7). Thus, (12) can be written as

dwln (t)

pr —awp, () — bsrw,(t) + ¢, (13)

where a,b and c are constants. To perform computations in
the spike domain, we propose the replacement of sydt with
> 4 0(t —t°)dt, where t° is the time of arrival of a spike.
Now, we employ the weight-adaptation rule

Win (t+A) —win () = (¢ — awin (t)) At—bwin (t) > 5(t —°) At

¢

(14)

The weight adaptation for three different input spike infos
is shown in Fig. 12. The weights do not settle down to
particular values, but their averages do. It is also seen that the
temporal dynamics of the circuit settles down within 0.1-0.2s.

Thus, as the input spike info increases, the rate of increase
of average current into N, decreases, resulting in the logarith-
mic dependence (Fig. 14). We have designed our logarithmic
SNN such that its domain is 20 — 120 Hz spike info, and in
this regime, our logarithmic translator is

Sout = Cln IOg(sin) - fl (15)
where ¢;,, = 10.73 and f; = 13.73 Hz.

000 ; L

500 s, =121Hz I
\ ' rvrey
— 400 H Starting point
% 3007 H for Spike Averagf . (a)
; ! s
2001
s, =120.8Hz
] .)
10% 0.2 0.4 0.6 0.8
£ 60 ; ‘ ‘
I 1
2 40% s, = 1208Hz; f, = 53.12Hz 1)
& 20 : ‘ ‘
0 0.2 0.4 0.6 0.8

Time (8)

Fig. 12: The synaptic weight w;,, dynamically changes in response
to the spike info s; in Fig. 11. The temporal dynamics of the spike

rate at the output neuron Ny, is also shown for s; = 120.8 Hz.

600

5007

4001

300

Synaptic Weight

2001

1005040 60 80 100 120

Input Spike Info (Hz)

Fig. 13: The mean and standard deviation of the synaptic weight after
the logarithmic circuit settles is shown as a function of s;. The value
of wy, decreases with increasing input spike info, and hence the rate
of increase of current into N> decreases with increasing input spike
info, as the current is proportional to the product of the weight and
the input spike info.

B. Exponentiation

The SNN to generate an output spike info proportional
to the exponential of the input spike info can be designed
on similar lines as that of the logarithm, except that we
now require the spike activity of the output neuron to be
super-linearly proportional to the synaptic current. The weight
change rule is hence

dWegp
dt

where ko, ks, w; and I; are constants. The spike-triggered
weight update rule is given by

Wezp(t + At) — Wegp(t) = (¢ — awegp(t)) At
+ bV weap(t) Y 8(t —t°) (17)

ts

= *kQ(wemp_wl) +k3(I_Il)’ (16)

However, we found that to accurately reproduce the ex-
ponential translation, it is necessary to offset the input spike

40

s, = 10.73 Iog(s1) -13.37
35¢

30
25-
20

15-

Output Spike Info, s, (Hz)

0 Observed

‘ ‘ ‘ . |~ LogFit

20 40 60 80 100 120
Input Spike Info, s, (Hz)

10¢

Fig. 14: The logarithmic circuit generates a spike stream, whose spike
info is proportional to the logarithm of the spike info of the input spike
stream (ranging from 20 — 120 Hz).

Winp Winp
wezp (t)
$ | e ot [—> So
I exp out
I el q I, b I e2 “ I, b

Fig. 15: The adaptive synapse weqp(t) responds dynamically to the
input spikes. By choosing appropriate parameters for the update,
output spike info can be made proportional to the exponential of
the input spike info.

info by 48Hz and scale it by a factor 0.93. Hence, the
exponentiation operation requires two neurons as shown in
Fig. 15.

1500 ; T .
Starting point = —— !
for Spike Average [lllllllmmﬂ
1000+ '
— s, = 52.5Hz
] [
= 500 ;

s = 29.9Hz

0 “‘“““‘“““MMN
© 0 0.2 0.4 0.6 0.8
& 60f ‘ ‘ 4
o 40/— &, =413Hz f, =506Hz] (b)
= ‘ ‘
N 200 0.2 0.4 0.6 0.8
Time (s)

Fig. 16: The synaptic weight wegp dynamically changes in response
to the spike info s; in Fig.15 (top). The temporal dynamics of the
spike rate at the output neuron N2 is also shown for s; = 41.3 Hz.

Dynamics in the weight update follow the expected trend
(Fig. 16), and the mean value of the synaptic strength now
increases super-linearly with input spike info (Fig. 17). The
output spike info at N.o is exponentially proportional to the
the input spike info in the domain of 30 — 50 Hz (Fig. 18). We
also verified that the norm of residuals obtained by fitting the

1000

8001

600+ J

400r 1

Synaptic Weight

200r 1

%30 35 40 45 50

Input Spike Info (Hz)

Fig. 17: The mean and standard deviation of the synaptic weight after
the exponential circuit settles is shown as a function of s;. The value
of wegp increases with increasing input spike info, and hence the rate
of increase of current into /N2 increases with increasing input spike
info.

200— ‘ : ‘
s, = 0.01192 exp(0.1862‘s1) + 16.05
N 150F il
z o
o
w
=) (e}
€ 100 1
(]
v
=
7]
S 501 b
o
5
O © Observed
—Exp Fit
ol ‘ ‘ 1 —Exp

30 35 40 45 50
Input Spike Info, s, (Hz)

Fig. 18: The exponentiation circuit generates a spike stream, whose
spike info is proportional to the exponential of the spike info of the
input spike stream (ranging from 30 — 50 Hz).

observed data with a square dependence is about a factor of
10 higher than the corresponding value for the exponential fit
shown in Fig. 18.

We have designed our exponential SNN such that its
domain is 30 — 50Hz spike info, and in this regime, our
exponential translator is

Sout = Qexp eXP(Ce:cpSm) + Sexp (18)

where Cepp = 0.1862, qezp = 11.92 x 1072 and the offset
Seap = 16.05 Hz.

C. Multiplication & Division

The blocks to compute In and exp functions can now
be combined with the adder circuit, in principle, to generate
circuits to perform multiplication and division. However, when
cascading these circuits, since Cegp, X ¢, = 1.99, we have
to incorporate a SNN circuit to scale the spike info of the
output of the dder/difference circuit by a factor of 2. Also,
since the range of the adder/difference circuit has to lie within

the domain of the exponential circuit, we use a spike info
translator. A block diagram of the complete circuit is given in
Fig. 19.

Sy n
§,%8,*!
S

S

Fig. 19: The SNN for multiplying/dividing two spike infos involve
the logarithmic converter and the adder/difference SNN. This output
is then scaled and offset before being passed to the exponential SNN.
Hence, six neurons are required for multiplication and division.

150

100+

50+

Spike Info (Hz)
no
w
S
(4]

Time (s)

Fig. 20: When the multiplier circuit is fed with two identical spike
trains whose frequency increases linearly with time, it generates an
output spike train whose spike info increases quadratically, in the
range of 20 — 120 Hz.

150

100

501

70

Spike Info (Hz)
N
w
S
(8]

60+

%

(s,5,)

(S o\
(S‘ISZ)obs 1727exp >

40; 2 3 4 5

Time (s)

50y

Fig. 21: When the multiplier circuit is fed with an increasing and
decreasing ramp spike info, it generates an output spike that closely
follows the expected parabolic product.

The response of the multiplier circuit for two slowly
varying spike info signals is shown in Figs. 20 and 21. In
both cases, the spike info of the output spike train changes
quadratically with time and there is excellent match between
the computed and expected values. The offset/scaling circuit
used in the multiplier employs n = 0.5 and sy = 21 Hz; the
circuit parameters are given in Table I.

150

100+

&)
o
T

S
N
w
A
o

100 ; :

Spike Info (Hz)
(=)

Time (s)

Fig. 22: Using the SNN for division, we demonstrate that it is possible
to generate a spike train whose spike info varies inversely proportional
to the spike info of the input spike train.

o
N

(@)

(=)

Amplitude
S
N

0 02 04 06 08 1

Time (s)
0.03

0.02 1
(b)
0.01 1

Rel. Amplitude

0 50 100 150 200
Frequency (Hz)

Fig. 23: An example of slowly-varying noisy signal (with std. dev:
0.1) and its DFT. This is used for noise-resilience tests with the SNNs.

Similarly, we demonstrate the performance of the SNN for
division, by showing that it is possible to generate a spike train
whose spike info varies inversely proportional to the spike info
of the input spike train (Fig. 22). One of the inputs used in this
experiment was a spike train with constant spike info, and the
other had a linearly increasing spike info. The offset/scaling
circuit now employs 1 = 0.5 and so = 40 Hz.

VI. PROCESSING NOISY SIGNALS

We now study the performance of our SNN in the presence
of noise in the input signals. We generated noisy signals with
frequency components no bigger than 200 Hz (the maximum
frequency we might encounter in the listed SNNs), by gen-
erating random values every 5ms, and interpolating between
them using piece-wise cubic hermite interpolation (pchip) for
the time-step of 0.01 ms. An example of a slowly-varying noisy
signal with standard deviation of 0.1 is shown with its Discreet
Fourier Transform (DFT) [11], in Fig. 23. We characterize the
noisy signal with a Coefficient of Variation (CV) which is
given by ¢, = o/u, where ¢ is the standard deviation, and
is the mean of the analog current used to generate the input
spike info.

We generated a slowly-varying noisy current with a CV of
0.1, and provided it as an input to the SNNs for determining

N
4}l
o

N 200!]
v(\l
[
] L]
yo 150
5]
=
& 100}]
=
o
=
O 50r q
° With noise
o —Without noise

0 2b 4b éO 80 100 120
Input Spike Info, s, (Hz)

Fig. 24: Variation in the average output spike info when the multiplier
SNN is fed with a spike stream generated using noisy analog current
(CV: 0.1), as compared with the noise-less scenario.

the square of the input spike info, and simulated the response
of the multiplier SNN for 100 experiments. The mean value of
the output spike info in response to the noisy input waveform
closely follows the expected spike trains without noise to a
high degree of accuracy, as shown in Fig. 24. The SNN can
tolerate noisy inputs with CV less than 0.2.

VII. APPLICATION TO SIGNAL ESTIMATION

As an exemplary application of these SNN circuits, we
demonstrate the use of the multiplier SNN for range detection.
We are inspired by the signal processing involved in echolo-
cation that is widely used by a variety of birds and animals
to estimate the distance to preys and obstacles. For instance,
its known that echolocating bats send out time varying sound
signals which are reflected by preys or obstacles, and there
are specific neural circuits that can detect the differences in the
interference patterns caused by the emitted and received sounds
[12]. However, it is not clear how spiking neural circuits can
determine the differences in interference patterns between the
emitted and received signal in real time.

sS4 (t) S (t)=s4(t-7)

jﬁm;"i_,/\m«,

Fig. 25: A multiplier circuit that takes as its inputs a time varying
spike train and its delayed version can produce an output spike train
whose maximum frequency will encode 7.

We propose a simple model that uses time varying spike
frequency signals and the multiplier SNN circuit that can detect
the time delay between emitted and received signal by real-
time signal processing. The multiplier SNN is fed by a time
varying spike signal and a time delayed version of the same
signal, as shown in Fig. 25. We assume that s; () is responsible
for the creation of the emitted signal (for example, the neuron
stimulating the larynx) and sa(t) is response of the neuron
at the detection end (for instance, the neuron in the ear). We

: S1(t) sz'(t) : @)

—3, () x sz(t)

T =38

Time (s)

Fig. 26: The emitted signal, s1, and the signal received after a delay
of 3s, sh, are shown in (a). The products of s; and s> for various
values of delay, 7, are presented in (b). As the time delay decreases,
the overlap of the signal increases, and the spike frequency of the
product increases.

110 i i T i :
q 0 Observed

—Spline fit

100

90+
80+
70
60
50+

Max. Spike Info (Hz)

40|

% 05 1 15 2 25 3

Fig. 27: The maximum spike frequency at the output of the multiplies
depends strongly on the time delay between the emitted and reflected
signal.

assume that there is some jitter and noise in the channel, hence
the reflected signal is not the exact replica of the emitted
signal. We monitor the peak spike rate at the output of the
multiplier for various values of time delay between the emitted
and received spike trains. The multiplication of the emitted
signal and received signal for various time delays can be seen
in Fig. 26. As can be seen in Fig. 27, the maximum spike
frequency at the output of the multiplier SNN is a strong
function of the time delay. So a network containing neurons
with different axonal delays at the transmitter and a multiplier
SNN could be used to determine the distance to the reflecting
object in real time with spike based processing.

VIII. CONCLUSION

We presented a methodology to perform spike based
arithmetic computations in neural circuits with spike-time
dependent adaptive synapses based on rate coding. Our circuits
perform the basic arithmetic operations on analog signals
which result in time dependent spike rates in the range of
40 — 140 Hz when fed to spiking neurons. The synapses in our

circuit obey simple, local and spike time dependent adaptation
rules. The building blocks we have designed in this paper
can perform the fundamental operations — addition, subtrac-
tion, multiplication and division, as well as other non-linear
transformations such as exponentiation and logarithm for such
time dependent signals in real-time. We have demonstrated
that these circuits can reliably compute even in the presence
of highly noisy signals. We have illustrated the power of
these circuits to perform complex computations based on the
frequency of spike trains in real-time, and thus they can be used
in a wide variety of hardware and software implementations
for navigation, control and computing. Though our circuits use
the AEIF neuron model, the outlined design methodology can
be readily used to design SNN circuits that use other spiking
neuron models.

ACKNOWLEDGMENT

This work was partially supported by the Department of
Science and Technology, Government of India.

APPENDIX
A. Parameters used for simulation

1) Adaptive Exponential Integrate-and-Fire neuron model:
Regularly spiking AEF neuron parameters used in this
study are C,, = 200pF; g, = 10nS; E;, = —70mV;
Vp = —50mV; Ap =2mV; a = 2nS; b = 0pA; 7, = 30mS
and V. = —58 mV.

REFERENCES

[11 R. A. Silver, Neuronal Arithmetic, 2010, Nature Reviews Neuroscience,
11, 474-489.

[2] F. Gabbiani, H. G. Krapp, C. Koch, G. Laurent, Multiplication and
stimulus invariance in a looming-sensitive neuron, 2004, J Physiol Paris,
98(1-3):19-34.

[3] J. L. Pefia, M. Konishi, Auditory spatial receptive fields created by
multiplication, 2001, Science, 292(5515):249-52.

[4] 'W. Maass, Networks of Spiking Neurons: The Third Generation of Neural
Network Models, 1976, Neural Networks, Vol. 10, No. 9, pp. 1659-1671.

[5] M. V. Srinivasan, G. D. Bernard, A Proposed Mechanism for Multipli-
cation of Neural Signals, 1997, Biol. Cybernetics, 21, 227-236.

[6] D. Tal, F. L. Schwartz, Computing with the leaky integrate-and-fire
neuron: logarithmic computation and multiplication, 1997, Neural Comp,
9:305318.

[71 P. Nezis, M. C. W van Rossum, Accurate multiplication with noisy
spiking neurons, 2011, J. Neural Eng, 8, 034005.

[8] C. Koch, I. Segev, The role of single neurons in information processing,
2000, Nature Neuroscience, 3, 1171-1177.

[9]1 R. Brette, W. Gerstner, Adaptive Exponential Integrate-and-Fire Model
as an Effective Description of Neuronal Activity, 2005, J Neurophysiol,
94:3637-3642.

[10] H. Shimazaki, S. Shinomoto, Kernel bandwidth optimization in spike
rate estimation, 2010, J Comput Neurosci, 29:171182.

[11] S. Smith, The Scientist and Engineers Guide to Digital Signal Process-
ing, 1999, California Technical Publishing, 2nd edition.

[12] N. Ulanovsky, C. Moss, What the bat’s voice tells the bat’s brain, 2008,
PNAS USA 105(25):8491-8.

[13] F. Y. H. Ahmed, B. Yusob, H. N. A. Hamed, Computing with Spiking
Neuron Networks A Review, 2014, Int. J. Advance. Soft Comput. Appl.,
Vol. 6, No. 1.

[14] C. Clopath, R. Jolivet, A. Rauch, H. L:uscher, W. Gerstner, Predicting
neuronal activity with simple models of the threshold type: Adaptive
Exponential Integrate-and-Fire model with two compartments, 2006,
Neurocomputing, doi:10.1016/j.neucom.2006.10.047

